

P1 Companion Standard

Dutch Smart Meter Requirements

Date: **March 14th, 2014**

Version: 4.2.2
Status: Final

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 1 of 22

CONTENTS

1.1	Scope	3
4.1	Galvanic Isolation	5
4.2	Power supply	5
4.3	Connection	5
4.4	Addressing the measuring device	5
4.5	Measuring device transfer time	6
4.6	Signals	6
4.7	Physical connector	6
5.1	Transfer speed and character formatting	7
5.2	Data readout	7
5.3	End of transmission	7
5.4	Representation of COSEM objects	8
5.5	Representation of COSEM Data Type octet-string (tag 9)	9
5.6	Representation of COSEM Data Type bit-string (tag 4)	9
5.7	Representation of COSEM Data Type boolean	9
5.8	Representation of COSEM Data Type enum	9
5.9	Representation of COSEM objects	10
5.10	Representation of M-Bus values	10
5.11	Representation of Profile Generic – Power failure logs	10
5.12	Representation of P1 telegram	11
5.13	Example P1 telegram	15
6.1	Electricity data	17
6.2	Messages	18
6.3	Gas Data	19
6.4	Thermal Data	19
6.5	Water Data	20
6.6	M-Bus Data of a fourth M-Bus device	
6.7	Change of M-Bus device	20
Appe	endix I Hub basic Schematic data lines	22

1 INTRODUCTION

1.1 Scope

This document provides a companion standard for an Automatic Meter Reading (AMR) system for electricity, thermal (heat & cold), gas, water and hot water meters. The scope of this standard is the end-consumer (P1) interface for:

- Residential electricity meters
- Residential thermal (heat & cold) meters
- Residential gas meters
- Residential water meters

This companion standard focuses on the P1 interface for gas, thermal (heat / cold), and water meters. There is no separate interface for electricity meters since these meters are technically part of the metering system.

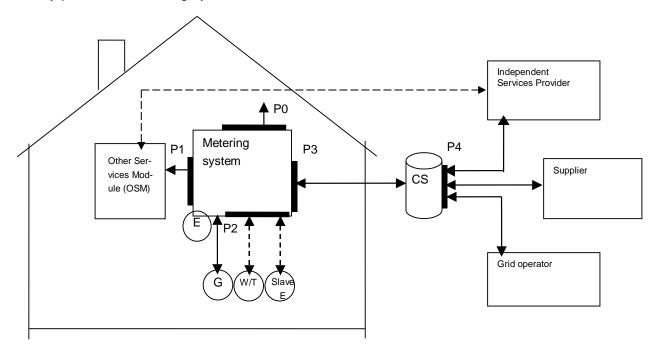


Figure 1. : Meter interfaces overview.

The goal of this companion standard is to reach an open, standardized protocol implementation and functional hardware requirements related to the communication between several types of Service Modules and a Metering System. Any specification in this standard is intended to encourage suppliers to develop their hardware and software in a common direction. Standardised protocols and hardware specifications are referred to as much as possible.

This companion standard is the result of a combined effort of the major Dutch grid operators.

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 3 of 22

2 SYSTEM ARCHITECTURE

The interface is based on the following:

- Simple installation by customer;
- Simple and clearly defined interface;
- Low cost for the installation itself;
- Low cost for the customer installing, operating and maintaining the interface;
- Safe for the customer;
- The metering system or the data in it cannot be compromised.

The interface is based on NEN-EN-IEC 62056-21 (Electrical metering-Data exchange for meter reading, tariff and load control – Part 21: direct local data exchange, 2002-05). Functional and technical requirements are given in the NTA 8130 document. This companion standard holds physical characteristics and protocol definitions for the interface.

3 NORMATIVE REFERENCES

The following standards are referred to in this company standard. For undated references the latest edition applies.

Ref.No.	Document	Description
1.	IEC 62056-21	Electricity metering – Data exchange for meter reading, tariff and
		load control – Part 21: Direct local data exchange
2.	IEC 62056-61	Electricity metering - Data exchange for meter reading, tariff and
		load control – Part 61: OBIS Object Identification System
3.	NTA 8130 NL:2007	Basisfuncties voor de meetinrichting voor elektriciteit, gas en
		thermische energie voor kleinverbruikers
4.	DSMR 4.2.2	Dutch Smart Meter Requirements Version 4.2.2
5.	AmvB	Algemene maatregel van Bestuur "Besluit op afstand uitleesbare
	Allivo	meet- inrichtingen"

Table 3-1: Normative References

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 4 of 22

4 PHYSICAL INTERFACE CHARACTERISTICS

The interface must be energy efficient and protected against fraud, OVP and ESD.

4.1 Galvanic Isolation

To protect the Metering System against reversed connection and over-voltage, and to lower the possibility of influencing the Metering System through the P1 port, the data lines of the P1 port will be equipped with an opto-coupler.

The opto-coupler must adhere to the relevant legislation and standards for measuring equipment. The power lines are galvanicly isolated from the power supply that powers the other parts of the meter.

4.2 Power supply

The power supply for the P1 port shall be able to withstand short circuits. Manipulation of the power supply lines shall never influence any other part of the meter,

When no device is connected through the P1 port, the power consumption of the P1 circuitry shall not be included in the register values. When a device is connected to the P1 port, the power consumption of the P1 circuitry shall be included in the register values. The P1 port will function and supply power independent of the state of the E breaker.

The power supply will supply a maximum current of 100 mA at 5 Volt. Overload protection shall be implemented as a current limiting mechanism.

4.3 Connection

To ensure a safe, stable solution the data connection will consist of three wires: one request signal, one data signal and signal ground. Activating the port is by activating (raising) the request signal (5V). While receiving data the requesting Service Module will keep the request port activated (raised).

Dropping the request line by connecting to ground is not allowed, to prevent short circuit. Modulating the request signal is not allowed. Data transfer will stop immediately after the request signal is dropped.

Note: the protocol is based on EN-IEC 62056-21 Mode D, exceptions are documented below where applicable.

More than one system can be connected to the measuring device, each system can request data input and all systems will receive the same data sent by the measuring device.

The power supply lines shall be isolated from the data connection.

4.4 Addressing the measuring device

Since a measuring device will have no more than one P1 port, there is no need to address it. The P1 port must be able to handle up to 5 connected P1 devices, and such P1 devices must be able to handle partial messages. The meter has only one P1 port, connecting more

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 5 of 22

devices will need a hub. The hub is outside the scope of the P1 document, but a basic schematic is shown in Appendix I.

4.5 Measuring device transfer time

The measuring device must complete a data transfer to the P1 device within eight seconds, because the data has to be sent by the P1 port to the P1 device every ten seconds. This means at a minimum there is a pause of two seconds between messages.

4.6 Signals

All signals are compliant with following levels (different from the NTA8130!) Operating range per (P1) device as seen from the meter:

			Meter			OSM		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units
Vi request	Request voltage				4	5	5.5	V
li request	Current supplied to the				4	5	10	mA
	request pin							
Vol data	Low level output voltage			1				V
	of the Data pin							
li data	Input current sinked,		5	6				mA
	supplied by the Data pin							
	per OSM							

Table 4-1: Signal Levels

Limit values:

Max Voltage: opto coupler: 15V, driver 6V Max current sink (data output) : max = 30mA

Logical levels are specified as follows:

SPACE "0" as > 4V MARK "1" as < 1 V

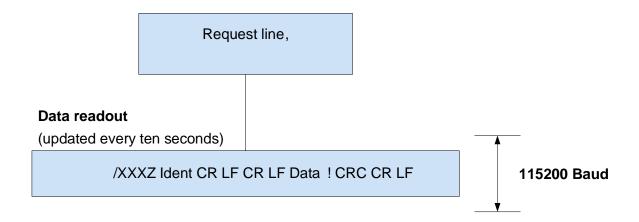
4.7 Physical connector

The connector type is RJ12. The Metering System holds a female connector, the customer can plug in a standard RJ12 plug. Note that the connector in the metering system is physically accessible at all times and should not be sealed or protected by a sealed cover.

Pin#	Signal name	Description
1	+ 5V	Power supply
2	Request	Input
3	Data GND	Ground
4	N.C.	Not Connected
5	Data	Output
6	Power GND	Power supply

Table 4-2: Physical Connector

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014


Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 6 of 22

5 PROTOCOL DESCRIPTION

The protocol is based on NEN-EN-IEC 62056-21 Mode D. Data transfer is requested with request line and automatically initiated every ten seconds until request line is released.

5.1 Transfer speed and character formatting

The interface will use a fixed transfer speed of 115200 baud. For character formatting a start bit, 8 data bits, no parity bit and a stop bit are used (8N1). Note this is not conforming to EN-IEC 62056-21 Mode D.

5.2 Data readout

The Metering System transmits the data message, as described below, immediately following the activation through the Request signal.

/	Χ	X	X	5	Identification	CR	LF	CR	LF	Data		CRC	CR	LF	
---	---	---	---	---	----------------	----	----	----	----	------	--	-----	----	----	--

One of the COSEM object attribute values in the data blocks could be used for firmware updates or parameter update of a P1 device. Because of this it is not allowed to split the large data block (which can contain up to 1024 characters).

CRC is a CRC16 value calculated over the preceding characters in the data message (from "/" to "!" using the polynomial: $x^{16}+x^{15}+x^2+1$). CRC16 uses no XOR in, no XOR out and is computed with least significant bit first. The value is represented as 4 hexadecimal characters (MSB first).

5.3 End of transmission

The data transmission is complete after the data message has been transmitted by the Metering System. An acknowledgement signal is not provided for.

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 7 of 22

5.4 Representation of COSEM objects

IEC 62056-61 [2] specifies the logical names of COSEM objects using OBIS, the Object Identification System. Value group F is not used. The following Value Formats are used for P1 Data Readout value representations:

Value Format	Format/Example	Meaning
Fn(x,y)	F7(3,3) – YYYY.YYY	Floating decimal number with a fixed num-
		ber of decimals behind the decimal point
		(in this case 3)
Fn(x,y)	F7(0,3) – YYYY.YYY or	Floating decimal number with a variable
	YYYYY.YY or YYYYYY.Y	number of decimals behind the decimal
	or YYYYYYY	point (with a maximum of 3)
In	I4 - YYYY	Integer number
Sn	S6 - CCCCCC	Alphanumeric string
TST	YYMMDDhhmmssX	ASCII presentation of Time stamp with
		Year, Month, Day, Hour, Minute, Second,
		and an indication whether DST is active
		(X=S) or DST is not active (X=W).

Note: n is the number of characters in the string.

Table 5-1: Value Formats

COSEM object attribute values are using the following Value Formats:

COSEM Data Type	Tag	Value Format
null-data	0	Empty
boolean	3	I1
bit-string	4	Sn
double-long	5	Fn(x,y)
double-long-unsigned	6	Fn(x,y)
floating-point	7	Fn(x,y)
octet-string	9	Sn
visible-string	10	Sn
bcd	13	S2
integer	15	In
long	16	Fn(x,y)
unsigned	17	Fn(x,y)
long-unsigned	18	Fn(x,y)
long64	20	Fn(x,y)
long64-unsigned	21	Fn(x,y)
enum	22	In
float-32	23	Fn(x,y), I
float-64	24	Fn(x,y), I

Table 5-2: Cosem Object Attributes

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 8 of 22

5.5 Representation of COSEM Data Type octet-string (tag 9)

COSEM Data Type octet-string is represented with Sn format where octets are formatted with hexadecimal characters. Octet-string length is implicit.

- 1) XX Hexadecimal characters for first octet
- 2) XX Hexadecimal characters for second octet
- 3) XX Hexadecimal characters for m-th octet (m is octet-string length).

 Note: An octet string or bit string with a length of m, will result in a Alphanumeric string Sn with a length of n, where n is 2 times m

5.6 Representation of COSEM Data Type bit-string (tag 4)

COSEM Data Type bit-string is represented with Sn format where bit-string is formatted with hexadecimal characters. First two hexadecimal characters represent number of unused bits in bit-string. The remaining hexadecimal characters represent bit-string bit values. Bit-string length is implicit.

- 1) XX Hexadecimal characters for first octet (number of unused bits)
- 2) XX Hexadecimal characters for second octet (first 8 bits)
- 3) XX Hexadecimal characters for m-th octet (last 8 -number of unused bits).

 Note: An octet string or bit string with a length of m, will result in a Alphanumeric string Sn with a length of n, where n is 2 times m

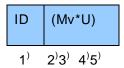
5.7 Representation of COSEM Data Type boolean

COSEM Data Type boolean is represented with I1 format where value false is represented as 0 and value true as 1.

5.8 Representation of COSEM Data Type enum

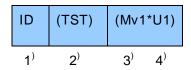
COSEM Data Type enum is represented with In format where enum values are represented as integer values.

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014


Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 9 of 22

5.9 Representation of COSEM objects


COSEM objects identified with OBIS Reduced ID use the following Dataset formatting for representation:

- 1) OBIS Reduced ID-code
- 2) Separator "(", ASCII 28_h
- 3) COSEM object attribute value
- 4) Unit of measurement values (Unit of capture objects attribute) only if applicable
- 5) Separator ")", ASCII 29_h

5.10 Representation of M-Bus values

COSEM Profile Generic objects identified with OBIS Reduced ID use the following Dataset formatting for representation.

- 1) OBIS Reduced ID-code
- 2) Time Stamp (TST) of capture time of measurement value
- 3) Measurement value 1 (most recent entry of buffer attribute without unit)
- 4) Unit of measurement values (Unit of capture objects attribute)

5.11 Representation of Profile Generic – Power failure logs

COSEM Profile Generic objects identified with OBIS Reduced ID use the following Dataset formatting for representation.

ID	(z)	(ID1)	(TST)	(Bv1*U1)	(TST)	(Bvz*Uz)
1 ⁾	2)	3)	4)	5 ⁾ 6 ⁾	7)	8) 9)

- 1) OBIS Reduced ID-code
- 2) Number of values z (max 10).

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 10 of 22

- 3) Identifications of buffer values (OBIS Reduced ID codes of capture objects attribute)
- 4) Time Stamp (TST) of power failure end time
- 5) Buffer value 1 (most recent entry of buffer attribute without unit)
- 6) Unit of buffer values (Unit of capture objects attribute)
- 7) Time Stamp (TST) of power failure end time
- 8) Buffer value 2 (oldest entry of buffer attribute without unit)
- 9) Unit of buffer values (Unit of capture objects attribute)

5.12 Representation of P1 telegram

The following table holds data objects represented with P1 Interface together with OBIS reference including object Attribute and Value Format for Reduced ID codes.

Every line (except the last one) is ended with a CR/LF (Carriage Return / Line Feed).

Note:

The OBIS reference Channel number (n) will be defined by the installing order of the M-Bus devices. So for example a Gas meter can be installed on channel 1, 2, 3 or 4. For that reason the Device-Type is sent first to identify the medium on P1. A slave E-meter can also be an M-Bus device.

Only when a M-Bus device is installed, its data will be exported on the P1 interface.

Value	OBIS	Attribute	Class ID	Value Format	Value Unit
	reference				
Header information	-	-	-	Manufacturer specific	
Version information	1-3:0.2.8.255	2	1	S2, tag 9	
for P1 output			Data		
Date-time stamp of	0-0:1.0.0.255	2	8	TST	YYMMDDhhmm
the P1 message					ssX
Equipment identifier	0-0:96.1.1.255	2	1	Sn (n=096), tag 9	
		Value	Data		
Meter Reading	1-0:1.8.1.255	2	3	F9(3,3), tag 6	kWh
electricity delivered		Value	Register		
to client (Tariff 1) in					
0,001 kWh					
Meter Reading	1-0:1.8.2.255	2	3	F9(3,3), tag 6	kWh
electricity delivered		Value	Register		
to client (Tariff 2) in					
0,001 kWh					
Meter Reading	1-0:2.8.1.255	2	3	F9(3,3), tag 6	kWh
electricity delivered		Value	Register		
by client (Tariff 1) in					
0,001 kWh					

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 11 of 22

Value	OBIS	Attribute	Class ID	Value Format	Value Unit
	reference				
Meter Reading	1-0:2.8.2.255	2	3	F9(3,3), tag 6	kWh
electricity delivered		Value	Register		
by client (Tariff 2) in					
0,001 kWh					
Tariff indicator elec-	0-0:96.14.0.255	2	1	S4, tag 9	
tricity. The tariff in-		Value	Data		
dicator can also be					
used to switch tariff					
dependent loads					
e.g boilers. This is					
the responsibility of					
the P1 user					
Actual electricity	1-0:1.7.0.255	2	3	F5(3,3), tag 18	kW
power delivered		Value	Register		
(+P) in 1 Watt reso-					
lution					
Actual electricity	1-0:2.7.0.255	2	3	F5(3,3), tag 18	kW
power received (-P)		Value	Register		
in 1 Watt resolution					
Number of power	0-0:96.7.21.255	2	1	F5(0,0), tag 18	
failures in any		Value	Data		
phase					
Number of long	0-0:96.7.9.255	2	1	F5(0,0), tag 18	
power failures in		Value	Data		
any phase					
Power Failure	1-0:99.97.0.255	2	7	TST, F10(0,0) - tag 6	Timestamp (end
Event Log (long		Buffer	Profile Ge-	Format applicable for	of failure) –
power failures)			neric	the value within the	duration in sec-
				log (OBIS code 0-	onds
				0:96.7.19.255)	
Number of voltage	1-0:32.32.0.255	2	1	F5(0,0), tag 18	
sags in phase L1		Value	Data		
Number of voltage	1-0:52.32.0.255	2	1	F5(0,0), tag 18	
sags in phase L2		Value	Data		
(polyphase meters					
only)					
Number of voltage	1-0:72:32.0.255	2	1	F5(0,0), tag 18	
sags in phase L3		Value	Data		
(polyphase meters					
only)					
Number of voltage	1-0:32.36.0.255	2	1	F5(0,0), tag 18	

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 12 of 22

Value	OBIS	Attribute	Class ID	Value Format	Value Unit
	reference				
swells in phase L1		Value	Data		
Number of voltage	1-0:52.36.0.255	2	1	F5(0,0), tag 18	
swells in phase L2		Value	Data		
(polyphase meters					
only)					
Number of voltage	1-0:72.36.0.255	2	1	F5(0,0), tag 18	
swells in phase L3		Value	Data		
(polyphase meters					
only)					
Text message	0-0:96.13.1.255	2	1	Sn (n=016),, tag 9	
codes: numeric 8		Value	Data		
digits					
Text message max	0-0:96.13.0.255	2	1	Sn (n=02048), tag 9	
1024 characters.		Value	Data		
Instantaneous cur-	1-0:31.7.0.255	2	3	F3(0,0), tag 18	Α
rent L1 in A resolu-		Value	Register		
tion.					
Instantaneous cur-	1-0:51.7.0.255	2	3	F3(0,0), tag 18	A
rent L2 in A resolu-		Value	Register		
tion.					
Instantaneous cur-	1-0:71.7.0.255	2	3	F3(0,0), tag 18	Α
rent L3 in A resolu-		Value	Register		
tion.					
Instantaneous ac-	1-0:21.7.0.255	2	3	F5(3,3), tag 18	kW
tive power L1 (+P)		Value	Register		
in W resolution					
Instantaneous ac-	1-0:41.7.0.255	2	3	F5(3,3), tag 18	kW
tive power L2 (+P)		Value	Register		
in W resolution					
Instantaneous ac-	1-0:61.7.0.255	2	3	F5(3,3), tag 18	kW
tive power L3 (+P)		Value	Register		
in W resolution					
Instantaneous ac-	1-0:22.7.0.255	2	3	F5(3,3), tag 18	kW
tive power L1 (-P) in		Value	Register		
W resolution					
Instantaneous ac-	1-0:42.7.0.255	2	3	F5(3,3), tag 18	kW
tive power L2 (-P) in		Value	Register		
W resolution					
Instantaneous ac-	1-0:62.7.0.255	2	3	F5(3,3), tag 18	kW
tive power L3 (-P) in		Value	Register		
W resolution					

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 13 of 22

Value	OBIS	Attribute	Class ID	Value Format	Value Unit
	reference				
Device-Type	0-n:24.1.0.255	9	72	F3(0,0), tag 17	
, ,		Device	M-Bus cli-		
		type	ent		
Equipment identifier	0-n:96.1.0.255	2	1	Sn (n=096), tag 9	
(Gas)		Value	Data		
Last hourly value	0-n:24.2.1.255	5	4	TST	
(temperature con-		Capture	Extended		
verted), gas deliv-		time	Register		
ered to client in m3,					
including decimal					
values and capture	0-n:24.2.1.255	2	4	F8(2,2)/F8(3,3), tag	m ³
time		Value	Extended	18	
			Register	(See note 2)	
Device-Type	0-n:24.1.0.255	9	72	F3(0,0), tag 17	
		Device	M-Bus cli-		
		type	ent		
Equipment identifier	0-n:96.1.0.255	2	1	Sn (n=096), tag 9	
(Thermal: Heat or		Value	Data		
Cold)					
Last hourly Meter	0-n:24.2.1.255	5	4	TST	
reading Heat or		Capture	Extended		
Cold in 0,01 GJ and		time	Register		
capture time					
	0-n:24.2.1.255	2	4	Fn(2,2)	GJ
		Value	Extended	(See note 1)	
			Register		
Device-Type	0-n:24.1.0.255	9	72	F3(0,0), tag 17	
		Device	M-Bus cli-		
		type	ent		
Equipment identifier	0-n:96.1.0.255	2	1	Sn (n=096), tag 9	
(Water)		Value	Data		
Last hourly Meter	0-n:24.2.1.255	5	4	TST	
reading in 0,001 m3		Capture	Extended		
and capture time		time	Register		
	0-n:24.2.1.255	2	4	Fn(3,3)	m3
		Value	Extended	(See Note 1)	
			Register		
Device-Type	0-n:24.1.0.255	9	72	F3(0,0), tag 17	
		Device	M-Bus cli-		
		type	ent		

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 14 of 22

Value	OBIS	Attribute	Class ID	Value Format	Value Unit
	reference				
Equipment identifier	0-n:96.1.0.255	2	1	Sn (n=096), tag 9	
		Value	Data		
Last hourly Meter	0-n:24.2.1.255	5	4	TST	
reading and capture		Capture	Extended		
time (e.g. slave E		time	Register		
meter)					
	0-n:24.2.1.255	2	4	Fn(3,3)	kWh
		Value	Extended	(See Note 1)	
			Register		

Table 5-3: P1 Telegram Representation

Note 1: Where n is the number of digits before the decimal point on the display of the meter + the required number of decimals. So for example if on the physical display of a Heat meter is shown 1234 GJ (without decimals) the n=6 and the format of the P1 output will be 1234,56 GJ.

Note 2: For Gas meters with a capacity up to 10 m³/h (G4 and G6) F8(3,3) is applicable. For Gas meters with higher capacities F8(2,2) is applicable.

5.13 Example P1 telegram

The following table shows an example of the P1 telegram which is in accordance to IEC 62056-21 Mode D.

Be aware of the fact that the number of OBIS codes and the order of OBIS codes is not fixed. The P1 device must be able to interpret the OBIS codes and understand the representation. For example: depending on installation, the OBIS codes for a heat/cold meter might be sent before the OBIS codes of a Gas meter.

The example telegram below is based on:

- DSMR version 4.2 (value 42 behind OBIS code 1-3:0.2.8.255)
- It is send at 2010, December 9th, 11h30m20s
- Gas value of 2010, December 9th, 11:00h is presented
- Standard message is in this case 01 61 81
- 4 power failures in any phase
- 2 long power failure in any phase
- Power Failure Event log:

Failure at 2010, December 8th, 15h20m15s, duration 240 seconds Failure at 2010, December 8th, 15h05m03s, duration 301 seconds

- 2 voltage sags in phase L1
- 1 voltage sag in phase L2 (polyphase meters only)

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 15 of 22

- 0 voltage sags in phase L3 (polyphase meters only)
- 0 voltage swells in phase L1
- 3 voltage swells in phase L2 (polyphase meters only)
- 0 voltage swells in phase L3 (polyphase meters only)
- Only one M-Bus device is connected to the Electricity meter. The register value of the Gas meter is 12785,123 m³. This value is captured by the G meter at 2010, December 9th, at 11h00m00s Wintertime.
- Instantaneous current per phase
- Instantaneous active power (+P) per phase
- Instantaneous active power (-P) per phase

```
/ISk5\2MT382-1000
1-3:0.2.8(42)
0-0:1.0.0(101209113020W)
0-0:96.1.1(4B384547303034303436333935353037)
1-0:1.8.1(123456.789*kWh)
1-0:1.8.2(123456.789*kWh)
1-0:2.8.1(123456.789*kWh)
1-0:2.8.2(123456.789*kWh)
0-0:96.14.0(0002)
1-0:1.7.0(01.193*kW)
1-0:2.7.0(00.000*kW)
0-0:96.7.21(00004)
0-0:96.7.9(00002)
1 - 0.99.97.0(2)(0 - 0.96.7.19)(101208152415W)(0000000240*s)(101208151004W)(0000000301*s)
1-0:32.32.0(00002)
1-0:52.32.0(00001)
1-0:72:32.0(00000)
1-0:32.36.0(00000)
1-0:52.36.0(00003)
1-0:72.36.0(00000)
0-0:96.13.1(3031203631203831)
3D3E3F303132333435363738393A3B3C3D3E3F303132333435363738393A3B3C3D3E3F)
1-0:31.7.0.255(001*A)
1-0:51.7.0.255(002*A)
1-0:71.7.0.255(003*A)
1-0:21.7.0.255(01.111*kW)
1-0:41.7.0.255(02.222*kW)
1-0:61.7.0.255(03.333*kW)
1-0:22.7.0.255(04.444*kW)
1-0:42.7.0.255(05.555*kW)
1-0:62.7.0.255(06.666*kW)
0-1:24.1.0(003)
0-1:96.1.0(3232323241424344313233343536373839)
0-1:24.2.1(101209110000W)(12785.123*m3)
!CE7C
```

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 16 of 22

6 DATA OBJECTS

Data Objects are defined in NEN-EN-IEC 62056-61:2002 Electricity metering – Data exchange for meter reading, tariff and load control – Part 61: OBIS Object Identification System. The following tables hold data objects and references to the OBIS. Note that this table assumes two tariffs. Currently two tariffs (Rate 1 low tariff and Rate 2 normal/high tariff) are defined, support for up to sixteen tariffs should be included.

6.1 Electricity data

Electricity -P1 transfers every ten seconds

Value	OBIS reference	NTA Use Case reference
Equipment identifier	0-0:96.1.1.255	Use case 3: Provide actual
		meter reads through P1
		Use case 5: Provide equip-
		ment status to P1
Meter Reading electricity delivered	1-0:1.8.1.255	Use case 3: Provide actual
to client (low tariff) in 0,001 kWh		meter reads through P1
Meter Reading electricity delivered	1-0:1.8.2.255	Use case 3: Provide actual
to client (normal tariff) in 0,001 kWh		meter reads through P1
Meter Reading electricity delivered	1-0:2.8.1.255	Use case 3: Provide actual
by client (low tariff) in 0,001 kWh		meter reads through P1
Meter Reading electricity delivered	1-0:2.8.2.255	Use case 3: Provide actual
by client (normal tariff) in 0,001		meter reads through P1
kWh		
Tariff indicator electricity. The tariff	0-0:96.14.0.255	Use case 5: Provide equip-
indicator can be used to switch tariff		ment status to P1
dependent loads e.g boilers. This is		
responsibility of the P1 user		
Actual electricity power delivered	1-0:1.7.0.255	Use case 3: Provide actual
(+P) in 1 Watt resolution		meter reads through P1
Actual electricity power received	1-0:2.7.0.255	Use case 3: Provide actual
(-P) in 1 Watt resolution		meter reads through P1
Number of power failures in any	0-0:96.7.21.255	Use case 7: Provide power
phases		quality information to P1
Number of long power failures in	0-0:96.7. 9.255	Use case 7: Provide power
any phases		quality information to P1
Power failure event log	1-0:99:97.0.255	Use case 7: Provide power
		quality information to P1
Number of voltage sags in phase L1	1-0:32.32.0.255	Use case 7: Provide power
		quality information to P1

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 17 of 22

Value	OBIS reference	NTA Use Case reference
Number of voltage sags in phase L2	1-0:52.32.0.255	Use case 7: Provide power
(polyphase meters only)		quality information to P1
Number of voltage sags in phase L3	1-0:72.32.0.255	Use case 7: Provide power
(polyphase meters only)		quality information to P1
Number of voltage swells in phase	1-0:32.36.0.255	Use case 7: Provide power
L1		quality information to P1
Number of voltage swells in phase	1-0:52.36.0.255	Use case 7: Provide power
L2 (polyphase meters only)		quality information to P1
Number of voltage swells in phase	1-0:72.36.0.255	Use case 7: Provide power
L3 (polyphase meters only)		quality information to P1
Instantaneous current L1	1-0:31.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous current L2	1-0:51.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous current L3	1-0:71.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous active power L1 (+P)	1-0:21.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous active power L2 (+P)	1-0:41.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous active power L3 (+P)	1-0:61.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous active power L1 (-P)	1-0:22.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous active power L2 (-P)	1-0:42.7.0.255	Use case 3: Provide actual
		meter reads through P1
Instantaneous active power L3 (-P)	1-0:62.7.0.255	Use case 3: Provide actual
		meter reads through P1

Note: Tariff code 1 is used for low tariff and tariff code 2 is used for normal tariff.

6.2 Messages

Text messages, transfer every ten seconds

Value	OBIS reference	NTA Use Case reference
Text message codes: numeric 8	0-0:96.13.1.255	Use case 12: Display stand-
digits		ard messages on meter dis-
		play and P1
Text message max 1024 charac-	0-0:96.13.0.255	Use case 13: Sending long
ters.		messages to port P1

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 18 of 22

The Meter will have storage capacity for one numeric message code (up to 8 numeric characters) and one 1024 character text message. Message codes and text messages are handled independently, but in the same way.

An example of a standard message code is:01 61 81. This standard message consists out of the maximum of 8 characters. The standard message codes can be found in the document describing the P4 port (see the document list)

If a device is connected, the meter will send the message (code and/or text) over the P1 interface every ten seconds. The text message cannot be extended with CR,LF (0A,0Dh) to split the message

6.3 Gas Data

The following is only applicable if Gas meters are connected. The OBIS reference Channel number (n) will be defined by the installing order of the M-Bus devices. So a Gas meter can be installed on channel 1, 2, 3 or 4.

Gas - P1 transfers every ten seconds the latest received hourly value & timestamp

Value	OBIS reference	NTA Use Case reference
Device-Type	0-n:24.1.0.255	
Equipment identifier	0-n:96.1.0.255	Use case 3: Provide actual
		meter reads through P1
Last hourly value (temperature con-	0-n:24.2.1.255	Use case 3: Provide actual
verted), gas delivered to client in		meter reads through P1
m3, including decimal values and		
capture time		

6.4 Thermal Data

The following is only applicable if Thermal (Heat or Cold) meters are connected. Combined Heat and Cold meters are not supported. The OBIS reference Channel number (n) will be defined by the installing order of the M-Bus devices. So a Thermal meter can be installed on channel 1, 2, 3 or 4.

Thermal (Heat or Cold)– P1 transfers every ten seconds the latest received hourly value & timestamp

Value	OBIS reference	NTA Use Case reference
Device-Type	0-n:24.1.0.255	
Equipment identifier	0-n:96.1.0.255	Use case 3: Provide actual
		meter reads through P1
		(x=5:Heat; x=6: Cooling)
Last hourly Meter reading Heat or	0-n:24.2.1.255	Use case 3: Provide actual
Cold in 0,01 GJ and capture time		meter reads through P1

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 19 of 22

6.5 Water Data

The following is only applicable if water meters are connected. The OBIS reference Channel number (n) will be defined by the installing order of the M-Bus devices. So a water meter can be installed on channel 1, 2, 3 or 4.

Water -P1 transfers every ten seconds the latest received hourly value & timestamp

Value	OBIS reference	NTA Use Case reference
Device-Type	0-n:24.1.0.255	
Equipment identifier	0-n:96.1.0.255	Use case 3: Provide actu-
		al meter reads through P1
Last hourly Meter reading in 0,001	0-n:24.2.1.255	Use case 3: Provide actu-
m3 and capture time		al meter reads through P1

6.6 M-Bus Data of a fourth M-Bus device (for example a slave E-meter to measure electricity production)

The following is only applicable if a fourth M-Bus device is connected. The OBIS reference Channel number (n) will be defined by the installing order of the M-Bus devices. So the fourth M-Bus device can be installed on channel 1, 2, 3 or 4.

Fourth M-Bus device -P1 transfers every ten seconds the latest received hourly value & timestamp

Value	OBIS reference	NTA Use Case reference
Device-Type 4 th M-Bus device	0-n:24.1.0.255	
Equipment identifier	0-n:96.1.0.255	Use case 3: Provide actu-
		al meter reads through P1
Last hourly Meter reading and cap-	0-n:24.2.1.255	Use case 3: Provide actu-
ture time		al meter reads through P1

6.7 Change of M-Bus device

If an M-Bus device is exchanged by another device type, the OBIS codes on P1 have to be changed accordingly.

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx Date: 14-03-2014

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 20 of 22

7 **DOCUMENT LIST**

Following table shows the complete set of documents that build up the Dutch Smart Meter Requirements, of which this Companion standard P1 document is a part of.

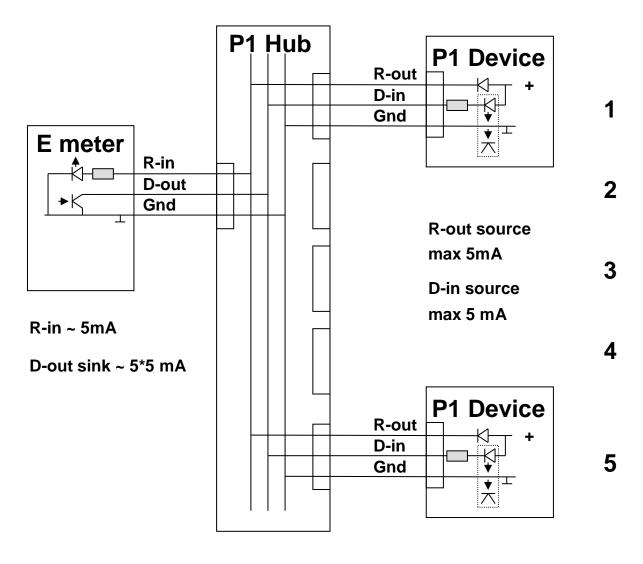

#	Document name postfix	Description
[1]	Main	The main document of the Dutch Smart Meter Requirements, containing
		all definitions and most of the use cases and requirements
[2]	P1	Companion standard P1
[3]	P2	Companion standard P2
[4]	P3	Companion standard P3
[5]	GPRS	Additional document describing the requirements for the GPRS infra-
		structure as part of the Dutch Smart Meter Specification.
[6]	P4	Detailed Procesmodel P4 (Central Access Server)
		ALV NEDU 20081001-022

Table 7-1: Document List

Version: 4.2.2 Final Page 21 of 22

APPENDIX I HUB BASIC SCHEMATIC DATA LINES

File name: 20140314 Dutch Smart Meter Requirements v4.2.2 Final P1.docx

Author: Netbeheer Nederland – WG DSMR

Version: 4.2.2 Final Page 22 of 22